Discover Planet Jupiter

Planet Jupiter is the largest planet in our Solar System.

Friday, December 29, 2006

Jupiters Rings

Jupiter has a faint planetary ring system composed of three main components: an inner torus (a doughnut-shaped surface of revolution) of particles known as the halo, a relatively bright main ring, and an outer "gossamer" ring. The main ring is probably made of material ejected from the satellites Adrastea and Metis. Material that would normally fall back to the moon is dragged into Jupiter's orbit due to its strong gravitational pull. The orbit of the material decays towards Jupiter and new material is added by additional impacts. In a similar way, the moons Thebe and Amalthea probably produce the two distinct components of the gossamer ring.

Jupiters Rings

Thursday, August 03, 2006

Jupiter

Jupiter is the fifth planet from the Sun and by far the largest within the our solar system. It and the other gas giants (Saturn, Uranus, and Neptune) are sometimes referred to as "Jovian planets." Jupiter (in mythology) stands in for the ritual and augural authority of the Flamen Dialis (high priest of Jupiter) and the chief priestly colleges. Jupiter is 778,330,000 km from the Sun and weighs 142,984 km.
Jupiter

Friday, April 14, 2006

Galilean Moons

Galilean moons are the four largest moons (that we currently know of) that orbit Jupiter. They were discovered by Galileo Galilei. These moons are even visible from a small telescope or binoculars.

Io, Europa, and Ganymede, the largest moons in the solar system, form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes the gravitational effects of the three moons to distort their orbits into elliptical shapes, since each moon receives an extra tug from its neighbors at the same point in every orbit it makes. The fourth Galilean moon is Callisto.

The tidal force from Jupiter, on the other hand, works to circularize their orbits. This constant tug of war causes regular flexing of the three moons' shapes, Jupiter's gravity stretches the moons more strongly during the portion of their orbits that are closest to it and allowing them to spring back to more spherical shapes when they're farther away. This flexing causes tidal heating of the three moons' cores. This is seen most dramatically in Io's extraordinary volcanic activity, and to a somewhat less dramatic extent in the geologically young surface of Europa indicating recent resurfacing.

Friday, March 31, 2006

The Galileo mission

So far the only spacecraft to orbit Jupiter is the Galileo orbiter, which went into orbit around Jupiter in December 7, 1995. It orbited the planet for over seven years and conducted multiple flybys of all of the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker-Levy 9 into Jupiter as it approached the planet in 1994, giving a unique vantage point for this spectacular event. However, while the information gained about the Jovian system from the Galileo mission was extensive in its own right, its originally-designed capacity was limited by the failed deployment of its high-gain radio transmitting antenna.


Jupiter as seen by the space probe Cassini. This is the most detailed global color portrait of Jupiter ever assembled.An atmospheric probe was released from the spacecraft in July, 1995. The probe entered the planet's atmosphere in December 7, 1995. It parachuted through 150 km of the atmosphere, collecting data for 57.6 minutes, before being crushed by the extreme pressure to which it was subjected. It would have melted and vaporized shortly thereafter. The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003 at a speed of over 50 km/s, in order to avoid any possibility of it crashing into and possibly contaminating Europa, one of the Jovian moons.

Saturday, March 25, 2006

Life on Jupiter

It is considered highly unlikely that there is any life on Jupiter, as there is little to no water in the atmosphere and any possible solid surface deep within Jupiter would be under extraordinary pressures. However, in 1976, before the Voyager missions, Carl Sagan hypothesized (with Edwin E. Salpeter) that ammonia-based life could evolve in Jupiter's upper atmosphere. Sagan and Salpeter based this hypothesis on the ecology of terrestrial seas which have simple photosynthetic plankton at the top level, fish at lower levels feeding on these creatures, and marine predators which hunt the fish. The Jovian equivalents Sagan and Salpeter hypothesized were "sinkers", "floaters", and "hunters". The "floaters" would be giant bags of gas functioning along the lines of hot air balloons, using their own metabolism (feeding off sunlight and free molecules) to keep their gas warm. The "hunters" would be almost squid-like creatures, using jets of gas to propel themselves into "floaters" and consume them. These ideas are only hypotheses and there is currently no way to prove or disprove them.

Jupiter's Atomosphere

Jupiter's atmosphere is composed of ~81% hydrogen and ~18% helium by number of atoms. The atmosphere is ~75%/24% by mass; with ~1% of the mass accounted for by other substances - the interior contains denser materials such that the distribution is ~71%/24%/5%. The atmosphere contains trace amounts of methane, water vapour, ammonia, and "rock". There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia.

This atmospheric composition is very close to the composition of the solar nebula. Saturn has a similar composition, but Uranus and Neptune have much less hydrogen and helium.

Jupiter's upper atmosphere undergoes differential rotation, an effect first noticed by Giovanni Cassini (1690). The rotation of Jupiter's polar atmosphere is ~5 minutes longer than that of the equatorial atmosphere. In addition, bands of clouds of different latitudes, known as tropical regions flow in opposing directions on the prevailing winds. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 600 km/h are not uncommon. A particularly violent storm, about three times Earth's diameter, is known as the Great Red Spot, and has persisted through more than three centuries of human observation.

The only spacecraft to have descended into Jupiter's atmosphere to take scientific measurements is the Galileo probe. It sent an atmospheric probe into Jupiter upon arrival in 1995, then itself entered Jupiter's atmosphere and burned up in 2003.